

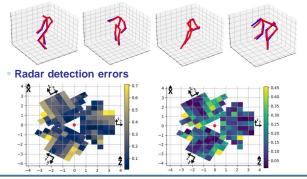
Improving Real-Time Omnidirectional 3D Multi-Person Human Pose Estimation with People Matching and Unsupervised 2D-3D Lifting

Pawel Knap, Peter Hardy, Alberto Tamajo, Hwasup Lim, Hansung Kim University of Southampton, UK, pmk1g20@soton.ac.uk

Introduction

Motivation

- Address a major limitation in existing models, namely the focus on single-person pose estimation
- Lack of omnidirectional Human Pose Estimation systems
- Cheap and Robust system utilizing mmWave radars and 360 camera
- Applications in in healthcare, entertainment, surveillance, sports, education, and beyond


Contributions

- Robust detection system, combining OpenPose [1] and off-the-shelf 2D-3D lifting algorithm [2]
- Performs consistently regardless of the number of individuals and it could theoretically can handle any number of them
- \bullet The only limitations being, the speed of off-the-shelf 2D detectors and the range of the radar sensor

Experiments

Qualitative pose reconstruction on the Human3.6M dataset

Results

Evaluation again preliminary work

- Radar calibration Table I
- Matching of camera and radar detected individuals Table II
 2D-3D lifting algorithm Table III

-	2 02								
				TABLE II					
					Radar 1 ↓	Radar 2	↓ R	Radar 3 ↓	
			Prelim Ours	inary Work [3]	$\begin{array}{c} 23.89\% \pm 6.57\% \\ 2.52\% \pm 2.51 \end{array}$	33.57% ± 5 9.44% ± 1		6 ± 263.89 1% ± 1.52	
			TABLE III						
				Method	Occlusion	1	PA-MPJPE	N-MPJPE	
TABLE I				LInKs [2]	None		33.8	61.6	
Radar	Direction	Preliminary [3]	Ours	Ours (Recrea			37.2	61.7	
1		20.65	16.45 11.45	Ours (Recrea	tion) Left Arm		52.1	78.1	
		20.65		Ours (Recrea	tion) Left Leg		46.0	73.2	
	z	11.41		Ours (Recrea	tion) Right Arr	n	49.8	75.7	
2	x	26.19	24.86 10.77	Ours (Recrea	tion) Right Les	t.	44.5	71.6	
	2	15.39		Ours (Recrea	tion) Left Arm	& Leg	62.0	86.0	
	2	13.39		Ours (Recrea			60.2	83.7	
3	x	16.88	15.94	Ours (Recrea	tion) Both Leg	s	69.3	99.8	
	z	13.83	13.46	Ours (Recrea	tion) Torso		88.4	122.0	

* This work was partially supported by the EPSRC Programme Grant Immersive Audio-Visual 3D Scene Reproduction (EP/V03538X/1) and partially by the Korea Institute of Science and Technology (KIST) Institutional Program (Project No. 2E32303).

Conclusion

Summary

Low average matching error of 4.63%

Pose reconstruction in the wild

- · Localisation errors reduced with radar and camera calibrations
- Lifting algorithm [2] results of a PA-MPJPE of 37.2 and N-MPJPE
- of 61.7 on the GT 2D poses in the Human3.6M dataset

Future work

- Optimizing algorithm speed
- · Expanding the system's operation range
- Improving occlusion handling

[1] Z. Cao, G. Hidalgo Martinez, T. Simon, S.-E. Wei, and Y.A. Sheikh. "Openpose: Realtime multiperson 2d pose estimation using part affinity fields" IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–1, 2019.

[2] Peter Hardy and Hansung Kim. "LInKs - Lifting Independent Keypoints - Partial Pose Lifting for Occlusion Handling with Improved Accuracy In 2D-3D Human Pose Estimation", 2023.

[3] Aarti Amin, Alberto Tamajo, "Real-time 3d multi-person pose estimation using an omnidirectional camera and mmwave radars," in Proc. ICEET, October 2023