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Abstract. This paper introduces an energy storage system controlled
by a reinforcement learning agent for smart grid households. It opti-
mizes electricity trading in a variable tariff setting, yielding consumer
savings averaging 20.91% annually without altering consumption habits.
Integrated with solar panels, it offers even greater cost reductions. A
Multi-Agent System simulation analyzes interactions between agents and
identifies beneficial price-demand relationships. Moreover, it shows stor-
age’s positive impact on the energy market for operators and consumers.
Deep Q Learning is identified as the most effective algorithm, efficiently
managing high-dimensional, nonstationary, and stochastic aspects of the
problem, bypassing the need for abstract modelling and deterministic
rules. Furthermore, our ablation study explores various storage sizes and
agent complexities.
Keywords: Smart Grid, Deep Reinforcement Learning, Multi-Agent
System, Energy Storage

1 Introduction
This paper proposes an energy storage solution controlled by Deep Reinforce-
ment Learning (DRL) to address fluctuating electricity costs in the smart grid
(SG). Utilizing real-world data from the Low Carbon London project [22] and Oc-
topus variable tariff data [18], a self-interested DRL agent makes decisions based
on price, storage level, and stored electricity value every 30 minutes. The study
investigates the concurrent usage of storage and photovoltaic panels (PV), and
simulates a community of households to evaluate their behaviour, cooperation-
competition patterns, and impact on the power grid. Various agent types, action
capabilities, storage capacities, and PV powers are tested. Results indicate signif-
icant consumer savings and grid stress reduction. In summary, our study exam-
ines the benefits and challenges of SG, highlighting the effectiveness of in-house
energy storage controlled by a selfish DRL agent. Full source code and supple-
mentary material are available at https://github.com/PawelKnap/EneStore.

2 Background
In reinforcement learning (RL), an agent aims to optimize its policy to maxi-
mize cumulative rewards. The RL cycle, shown in figure 1, involves the agent
selecting actions, thus altering the environment state, and receiving rewards. A
policy π(a1, s1) = Pr(a1|s1) dictates the agent’s actions based on the current
environment state. The value function is computed as V (s1) = E(

∑∞
t=1 γ

trt|s1),
approximating the expected cumulative reward in a given state. Another key
concept is the quality function, Q(s1, a1) = E[R(s2, s1, a1) + ξV (s2)], assessing
state-action pairs’ quality considering immediate and future rewards. This func-
tion operates within a Markov Decision Process (MDP). MDP’s crucial feature

https://github.com/PawelKnap/EneStore


2 P. Knap and E. Gerding

Fig. 1: Reinforcement Learning cycle. An agent in state s1 chooses action a1,
affecting the environment to transition to s2 and receiving reward r1, and the
whole process repeats itself. Adapted from [7].

is the conditional independence of the next state from prior states and actions.
The value and policy functions can be derived from the Q function, with the
former representing maximum value as V (s1) = maxaQ(s1, a), and the latter
indicating the action with the maximum V (s1) as π(a1, s1) = argmaxaQ(s1, a).

2.1 Used method overview

In Q-learning, an agent updates its Q function iteratively using the formula:
Qnew(s1, a1) = Qold(s1, a1) + α[r1 + γmaxaQ(s2, a) − Qold(s1, a1)], where α
is the learning rate. Here, r1 + γmaxaQ(s2, a) represents the target estimate of
cumulative reward, serving as part of an error signal which guides the Q function
update, with zero error indicating optimal policy discovery. The update increases
the Q value if the agent’s reward exceeds expectations, or decreases it otherwise.
In practice, the Q function is a table of Q values for different states and actions.

Deep Q Learning (DQL) [17], an off-policy gradient-free technique, employs
deep neural networks (NN) to approximate the Q function for decision-making.
While very deep NNs excel in tasks like Computer Vision [13], DRL often opts for
simpler NN architectures with 2-3 hidden layers [24,27]. During training, it bal-
ances exploration and exploitation through trial-and-error, gradually transition-
ing from random to informed actions based on experience, focusing exploration
on promising paths. In DQL, the quality function Q(s1, a1) is parameterized by
NN weights Θ, addressing high-dimensional feature approximation and the curse
of dimensionality [6]. The NN minimizes the squared error expectation via gra-
dient descent and backpropagation to optimize parameters Θ, determining the
optimal Q-function. Experience replay [16] enhances generalization using pre-
vious transitions to update NN weights. Additionally, two NNs, the policy and
target network, manage correlations and improve stability.

3 Related work
Whilst there is agreement that storage presence in SG is beneficial, optimal de-
ployment location remains debated. Barbour et al. [4] advocate for community
batteries over individual household storage to reduce energy exchange with the
grid. However, their approach increases demand peaks, adding to grid stress.
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Voice et al. [25] propose decentralized control of micro-storage selfish agents in
MAS, reducing supplier costs by 16% and enhancing robustness, yet constant
daily load and equal import-export price assumptions may limit applicability.
Their approach also overlooks the self-use of stored energy and renewable in-
tegration. Wang et al. [26] suggest shared ownership of household storage, im-
proving peak reduction and network investment, but our approach offers similar
advantages while being simpler. Furthermore, their joint storage control raises
privacy concerns. Deng et al [8] propose price schemes to influence consumption
patterns thus reducing demand peaks, whereas our solution achieves the same
without requiring behaviour changes.

An overview of energy marketplace models and dynamic pricing techniques
for SG is provided in [15,5,14]. A recent study [11] introduces an RL-based en-
ergy market model for prosumer-dominated microgrids. Employing multi-agent
reinforcement learning (MARL), it establishes a dynamic pricing environment
linked to real-time demand, resulting in increased profits for prosumers and the
grid operator, along with reduced grid reserve power utilization. However, it fo-
cuses solely on prosumers, neglecting consumers. Another work [21] presents a
MARL-based solution for industrial sites to manage electricity costs amid fluctu-
ating prices and growing renewable power generation. This approach optimizes
production resources, battery storage, self-generation, and market trading to
minimize expenses. Comparative assessments demonstrate the superiority of the
MARL system over rule-based strategies in terms of speed and quality. How-
ever, it simplifies cooperative agents’ behaviours by considering only essential
information, potentially overlooking their complete intricacy.

Machine Learning (ML) algorithms have diverse applications in SG. For ex-
ample, Atef and Eltawil [3] forecast electricity prices, Asare-Bediako et al. [2]
use NNs for residential load profile forecasting, and Eck et al. [10] predict local
energy demand. Furthermore, Singh et al. [23] propose a novel MAS-based sys-
tem for load frequency control, outperforming previous algorithms, leveraging
distributed RL controllers and swarm optimization. Additionally, Qiu et al. [20]
explore DRL’s approach to peer-to-peer energy trading, offering an alternative
SG functioning method. Ali and Choi [1] provide a comprehensive review of ML
techniques in SG, highlighting six main development areas and discussing market
liberalization and economic aspects.

4 Experimental setup
The experiment used electricity consumption data from the Low Carbon London
project [22], involving 5,567 London households’ smart meters data from Novem-
ber 2011 to February 2014. This data was merged with variable tariff prices from
Octopus Energy [18], resulting in a dataset spanning over 15 million episodes
for single-agent simulations. Storage sizes of 0.5kWh, 1.5kWh, and 3kWh were
studied, corresponding to available in-house socket powers. Agent operations are
shown in Figure 1. Agents make decisions based on the environmental state in
each half-hour episode, with actions including waiting, purchasing, using, or sell-
ing energy. The range of environment states varies depending on the scenario,
from 110 in single-agent to infinity in MAS simulations.
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4.1 Simulation of solar panels energy generation
To model households as prosumers, we employed an algorithm simulating PV
energy generation due to insufficient real data for the long training period. For
each interval excluding nighttime, energy production in kWh was computed.
Daytime duration, average sunrise, and sunset times were calculated for London,
remaining constant for 30 days, resulting in a 360-day simulation year. Solar
power production patterns were simulated using Gaussian functions with small
random variations. Additionally, brief periods of low energy production due to
cloud cover were simulated by adjusting energy production with probabilities.
Figure 2c illustrates a typical solar generation pattern. The energy within each
interval is scaled based on the average daily energy production, which varies
monthly. Simulations can be repeated for any number of years, with each daily
generation pattern being unique. The simulated annual energy generation varies
between 800 and 900 kWh for a 1kW system (proportionally more for higher
powers), as detailed in [9].

4.2 Single-agent simulation
Baseline algorithm operates on a simple rule: it buys energy for storage when
the price is below 9 p/kWh, uses stored energy when the price exceeds 18 p/kWh,
and waits otherwise. Any electricity deficit is bought from the grid. In the pro-
sumer simulation, all generated energy is immediately sold.
Deep Q Learning agent employs the reward policy detailed in Algorithm 1.
Epsilon linearly decreases from 1 to 0 over 15 million training examples, while
gamma is set to 0. A replay memory of 1024 episodes updates a neural network
with one hidden layer of 2048 units, using a batch size of 32 examples and the
Adam optimizer with a learning rate of 10−9. The target network updates every
1000 episodes. Similar to the baseline, the agent chooses from three actions (buy,
use, wait) in each time interval, purchasing any deficit from the grid. The agent’s
environment state is defined by storage level, stored energy value, and current
electricity price. To optimize results, the latter two variables are binned into 10
categories based on price per kWh, while storage filling is binary (empty or not),
resulting in 110 states due to the correlation between storage filling level and
stored energy value (which is 0 when storage is empty).
DQL agent with increased action space.Exploring the addition of a fourth
action allowing agents to sell stored energy aimed to boost savings in scenarios
with full storage, high export prices, and low energy consumption, or when
export prices exceed import prices. The NN incorporates the selling price as a
fourth input, modelled by the Octopus export tariff binned similarly to import
prices (10 bins each). Thus, the state space increases from 110 to 1,100. The
reward policy, including the red colour code, is detailed in Algorithm 1. All
other parameters remain unchanged from subsection 4.2.
DQL agent as a single prosumer is created by integrating the PV simulator
into the 3-action DQL agent without retraining. Octopus’s export tariff deter-
mines the sell price. The produced energy is firstly used for household consump-
tion, with surplus either stored or sold if storage is full. Alternatively, generated
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energy is added to storage or sold if storage space is insufficient. The former
excelled in single-agent, while the latter performed better in MAS simulations,
as explained in the Appendix.

4.3 MAS simulation
3-action DQL agents were combined in a MAS to simulate a community of
three households, with each represented by one retrained agent. They operated
in a shared electricity market with prices determined by community demand.
Various price-demand functions, including linear, logarithmic, and exponential,
were modelled as follows: Price = 3× demand, Price = 11× ln(3× demand+
0.7), P rice = exp(demand/11.25) − 1. The decision to include the logarithmic
function was influenced by findings from Lipman [12], showing a logarithmic
relationship between net demand and price in the Octopus tariff. Agents under-
went retraining with 1.2 million episodes in the MAS scenario, maintaining a
reward policy as described in section 4.2. Threshold price values for purchasing
decisions were 3.075, 9.04, and 0.19 p/kWh for linear, logarithmic, and exponen-
tial functions. They were chosen based on the observation that around 60% of
instances in the training set had prices lower than these thresholds. The same
principle guided the setting of the original threshold values.

Agent’s NNs have two hidden 2048-wide layers, with continuous input data
on price, stored energy quantity, and its value. Distinct 128-wide replay memo-
ries provide training batches of 32 samples, with target networks updated every
100 episodes. Adam optimizers with a learning rate of 10−6 were employed.
Gamma was set to 0, and epsilon decreased linearly from 1 to 0. Testing was
conducted on three datasets, each with 300,000 episodes per agent. In the MAS
with the logarithmic price function, an adjustment was made to accommodate
negative prices, with such purchases receiving a reward of 10. Since the initial
price depends on community demand, it’s assumed the energy supplier accurately
predicts demand for the upcoming interval. However, agents’ actions influenc-
ing demand cause price variation, posing a challenge as they base decisions on
the initial price, different from the final price used for bill calculations. Finally,
PV data was included in the MAS simulation with logarithmic prices to model
households as prosumers. The selling price is set at 80% of the import price,
unless the import price is negative, in which case the selling price is 0, effectively
mirroring real-world scenarios due to inherent regularization.

5 Results
5.1 Octopus Agile Import and Export tariff savings
Switching from a fixed tariff to the variable Octopus Agile tariff can yield savings
for households, as shown in Table 4. Costs rise only in 1 out of 40 cases due to
high peak consumption, but our storage system offsets this loss. Unless specified,
all simulations measure savings relative to the Octopus Agile tariff’s electricity
cost. In the first quarter of 2019, the mid-level PV export tariff was 3.54 p/kWh,
according to Ofgem [19]. This rate is used here to demonstrate the advantages
of a variable export tariff. Table 5 presents annual profit statistics resulting from
the tariff change, compared to earnings under the Octopus Agile export tariff.
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5.2 Results of a single agent simulations
Table 1 illustrates the superiority of the DQL approach over the baseline, with a
slight improvement for the 4-action DQL, except in the case of a 0.5 kWh storage.
The simulations underscore that significant savings stem from combining storage
and solar panels, showcasing agents’ efficacy as prosumers. However, expanding
battery capacity for a given PV power does not substantially increase savings,
as evaluated battery sizes are not adequate for simulated PV power generation.

Table 1: Mean yearly savings from various agents with different storage sizes,
relative to no storage case. With PV, surplus energy is immediately sold.

0.5kWh battery 1.5kWh battery 3kWh battery

Metrics Savings in £ Savings in % Savings in £ Savings in % Savings in £ Savings in %

Baseline 19.26± 2.81 6.35± 2.79 44.97± 12.95 13.39± 3.67 61.27± 22.2 17.42± 3.77

DQL 21.7± 3.01 7.13± 3.08 51.4± 14.92 15.21± 4.01 68.91± 26.96 19.2± 3.76

DQL 4-actions 21.63± 2.77 7.01± 3.31 51.89± 13.31 15.35± 5.03 73.23± 23.6 20.91± 5.76

DQL with 1kW PV 74.17± 23.86 24.97± 13.62 77.19± 24.79 25.94± 13.82 78.4± 25.94 26.49± 14.72

DQL with 4kW PV 275.39± 74.72 90.33± 45.41 275.53± 74.76 90.27± 45.4 275.93± 74.96 90.47± 45.38

5.3 Results of MAS simulations
Table 2 demonstrates varying savings influenced by individual agents’ consump-
tion patterns. The exponential function produces the highest savings, followed
by the linear function, indicating that steeper price-demand functions corre-
late with greater savings. Additionally, specific consumption patterns contribute
to enhanced savings, with agent 2 achieving the highest savings, with agent 0
ranking second across all price-demand functions. Furthermore, Table 3 displays
saving rates for simulations of MAS with solar panels energy generation.

Table 2: Savings as a percentage ratio between costs with and without the 0.5
kWh storage system under different price-demand functions in MAS simulation.

Price-demand function Agent 0 savings in % Agent 1 savings in % Agent 2 savings in %
Logarithmic 1.87 ± 0.56 1.52 ± 0.35 2.52 ± 0.24

Linear 3.16 ± 0.45 2.73 ± 0.38 4.75 ± 0.29
Exponential 5.05 ± 1.57 4.65 ± 0.75 5.67 ± 0.4

Not all consumers may prefer to use storage. Hence, the analysis extends to
evaluate the impact of households with storage on the electricity expenses of
those without it. The resulting cost reductions for various scenarios and the per-
centage deviation in savings compared to the scenario where all agents have stor-
age facilities are summarized in Table 6. This table also highlights that agents
exert varying influences on neighbourhood savings. The absence of storage in
agent 0 slightly affects the savings of all agents, including itself. Agents 1 and 2
experience a decrease of under 3% in scenarios where other agents lack storage.
However, if they are without storage, their savings drop by more than 50%. No-
tably, agent 0 sees a significant decline in savings when any community member
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loses access to storage. Nevertheless, each agent saves when at least one of them
possesses a storage system.

Table 3: Savings expressed as a percentage ratio between costs with storage and
PV versus costs when all agents are without storage, in parentheses without
storage and PV. Agents operate in a shared market with logarithmic prices.
Cases 1, 2, and 3 involve all agents having storage of 0.5, 1.5, and 3 kWh,
coupled with PV of 1, 4, and 6 kW, respectively. In case 4, agent 0 has 0.5 kWh
storage and 1 kW PV, agent 1 has 1.5 kWh storage and 4 kW PV, and agent 2
has 3 kWh storage and 6 kW PV. In case 5, agents 0 and 1 lack both storage
and PV, while agent 2 has 3 kWh storage and 6 kW PV.

Case Agent 0 savings in % Agent 1 savings in % Agent 2 savings in %
1 2.11 ± 0.57(24.34 ± 2.69) 0.89 ± 0.53(21.02 ± 3.69) 2.77 ± 1.13 (21.82 ± 1.8)
2 2.04 ± 0.78(43.39 ± 2.33) 1.07 ± 0.83(36.27 ± 6.28 ) 4.95 ± 0.99(38.59 ± 1.75)
3 1.87 ± 0.9 (46.06 ± 1.83) -0.2 ± 0.21 (37.85 ± 6.09) 4.88 ± 0.65 (41.3 ± 2.44)
4 2.45 ± 1.32(40.95 ± 2.83) 1.52 ± 0.78(35.81 ± 6.14) 9.99 ± 1.11(41.54 ± 0.87)
5 1.28 ± 0.67 (28.57 ± 2.6) 0.83 ± 0.31 (23.95 ± 4.1) 9.44 ± 1.97(38.11 ± 0.63)

6 Discussion
6.1 Single agent simulations

Figure 2a illustrates a logarithmic increase in median saving rates with storage
size, plateauing around 22% for capacities over 4 kWh. These findings, coupled
with the significantly higher costs of high-capacity storage, make the installation
of large storage facilities economically unfeasible. Technological limitations also
arise, such as the maximum power capacity of home charging points. Further-
more, analysis shows savings decrease as total yearly electricity consumption
increases (Figure 2b).

6.2 MAS simulation

The MAS simulation yielded significant findings. Firstly, certain functions, no-
tably the exponential one, offer more benefits to consumers (Table 2). This is
because agents utilize stored energy during peak times and buy it during off-
peak hours. The steeper price-demand function results in higher price disparities
between peak and off-peak periods, leading to greater savings. Secondly, the pres-
ence of at least one household with a storage system reduces electricity costs for
others without it. However, savings are higher for these households when each
has its own storage (Table 3). Thirdly, the agents’ behaviour examination reveals
no clear signs of cooperation or competition.

Table 3 illustrates that larger battery capacities and more powerful PV sys-
tems lead to increased savings compared to households without panels and stor-
age. The values in the table represent savings resulting from all storage within
the system. This explains why agents 0 and 1 show non-zero values in case 5,
despite lacking storage themselves, and why Agent 1 records negative savings in
case 3 due to other agents’ storage impact. Reducing storage size and PV power
for agents 0 and 1 in case 4 doesn’t substantially decrease total savings compared
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(a) (b)

(c) (d)

Fig. 2: Median percentage yearly saving of DQL agent versus storage capacities
showed in (a), and a comparison of yearly usage and savings of DQL agent
for different households each using 3kWh storage in (b). Subfigure (c) displays
solar energy generation patterns for June 2nd (Blue) and January 1st (Orange)
generated by our simulation for a 1 kW PV. Subfigure (d) compares community
demand without (Blue) and with (Orange) 0.5 kWh storage for all agents.

to case 3, mainly due to Agent 2’s influence. This setup underscores that individ-
ual agents’ savings hinge on the entire system’s behaviour, and even households
without storage or PV benefit when neighbours adopt these technologies.

7 Conclusions

In summary, our agent-controlled energy storage system benefits both consumers
and suppliers, addressing the challenges of variable tariffs and contributing to SG
development. Notably, all agents, even those initially disadvantaged, benefit thus
fostering social acceptance of SG. Furthermore, the system smoothens demand
curves, minimizing grid load fluctuations.

Key findings include: higher consumption correlates with smaller savings; in-
creased storage capacity leads to greater bill reduction, plateauing around 4kWh;
and significant savings result from combining the system with PV panels. Single-
agent simulations favour immediate self-use, surplus storage, and excess energy
sales, while MAS simulations prefer direct storage and surplus sale. The DQL
agent maintains a full storage state most of the time, extending the battery lifes-
pan. Octopus Agile price-demand patterns resemble a logarithmic function, with
exponential pricing computations yielding optimal savings for MAS. Future work
may involve refining the simulation to incorporate real-world dynamics, explor-
ing larger agent populations, and adapting to current consumption patterns.
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A Experimental Setup details

Algorithm 1 DQL reward policy
1: if action == hold then
2: if Price (p/kWh) ≥ 10.71 & storage not empty & Value of energy in storage

(p/kWh) ≥ Price (p/kWh) then
3: Reward = 1
4: else
5: Reward = 0.001
6: end if
7: else if action == buy then
8: if Storage = empty & Price (p/kWh) < 10.71 then
9: Reward = 1

10: else if Price per kWh ≥ 10.71 then
11: Reward = 0
12: else
13: Reward = 0.3
14: end if
15: else if action == use then
16: if Price (p/kWh) ≥ Value of energy in storage (p/kWh) & Storage not empty

& Import price (p/kWh) ≥ Export price (p/kWh) then
17: Reward = 1
18: else
19: Reward = −0.3
20: end if
21: else if action == sell then
22: if Export price (p/kWh) ≥ Value of energy in storage (p/kWh) & Export price

(p/kWh) ≥ Import price (p/kWh) & Storage not empty then
23: Reward = 1
24: else
25: Reward = −0.3
26: end if
27: end if

B Simulation of PV energy generation details
Furthermore, real-world data has brief periods of low energy production due to
cloud cover. To simulate that, the amount of energy produced in an interval
chosen with a 15% probability is multiplied by 0.1 if the previous interval was
not cloudy. Otherwise, the probability increases to 60%, creating longer periods
of overcast weather.

The average monthly energy production is estimated using the widely avail-
able website https://www.renewables.ninja/. These values are then divided
by 30 to estimate the daily energy production for each month.

C Explanation of inherent regularization in MAS with
prosumers

The solar energy generation data is included in the MAS simulation with a
logarithmic price scheme to model some households as prosumers. The selling

https://www.renewables.ninja/
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price is established at 80% of the import price, unless the import price is nega-
tive, in which case the selling price is set to 0. This mirrors the import-export
price relationship seen in the Octopus Agile tariff. This simplified relationship
effectively simulates real-world scenarios due to inherent regularization. In our
simulation, high export prices would require high import prices, which usually
occur during high community demand. However, in such cases, agents seldom
have surplus energy to sell, making the impact of high export prices negligible
in the simulation.

D Results details

Table 4: Yearly savings resulting from using Octopus Agile tariff versus a con-
stant tariff of 14.228pence/kWh. Columns are independent (maximum values in
£ and % may not come from the same test dataset).

Metrics Savings in £ Saving as % of total bill
Median 42.78 12.34
Mean 60.78 13.65

Standard Deviation 59.77 9
Maximum value 263.61 35.69
Minimum value -14.02 -3

Table 5: Difference of profits per year between variable and flat (3.54pence/kWh)
export tariffs on solar energy generation simulations with different powers used
for single agent investigation. The columns are independent.

1kW installation 4kW installation 6kW installation
Metrics Profit in £ Profit in % Profit in £ Profit in % Profit in £ Profit in %
Median 42.1 139.61 171.63 138.96 257.54 139.16
Mean 35.75 118.63 147.74 118.61 221.21 118.47

Standard Deviation 13.37 44.05 55.21 44.23 81.96 43.7
Maximum value 52.52 175.21 216.35 173.35 324.85 175.99
Minimum value 9.54 30.99 39.98 31.64 57.56 31.05

Table 6: Savings showed as a percentage ratio between costs with and without
storage for agents in columns 1-3. Columns 4-7 display the percentage change in
savings between cases when all, and not all agents have storage. All agents use
0.5 kWh storage in a shared market with a linear price-demand function.
Agents with battery Savings (%) Savings Change (%)

Agent 0 Agent 1 Agent 2 Agent 0 Agent 1 Agent 2
0, 1 and 2 3.16 ± 0.45 2.73 ± 0.38 4.75 ± 0.29 - - -
1 and 2 2.88 ± 0.27 2.68 ± 0.39 4.66 ± 0.20 - 8.86 - 1.83 - 1.89
0 and 2 1.73 ± 0.54 1.27 ± 0.08 4.72 ± 0.10 - 45.25 - 53.48 - 0.63
0 and 1 2.27 ± 0.28 2.70 ± 0.74 2.08 ± 0.51 - 28.16 - 1.10 - 56.21

2 1.42 ± 0.36 1.21 ± 0.07 4.63 ± 0.17 - 44.94 - 55.68 - 2.53
1 1.98 ± 0.19 2.66 ± 0.74 1.95 ± 0.44 - 37.34 - 2.56 - 58.95
0 0.32 ± 0.20 0.06 ± 0.01 0.13 ± 0.07 - 89.87 - 97.80 - 97.26
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E Discussion details
Recall a household initially incurring a £14.02 loss upon switching to a variable
tariff. However, employing the 3-action DQL agent results in substantial savings:
£21.24 (4.41%) for 0.5 kWh, £62.35 (12.93%) for 1.5 kWh, and £96.3 (19.98%)
for 3 kWh storage. Compared to flat tariff costs, this equates to savings of 1.69%,
11.3%, and 19.25% for the respective storage capacities. This indicates that even
households potentially affected by variable tariffs in the SG can benefit from
adopting the proposed storage system.

When analyzing agent behaviour, it’s crucial to distinguish between success-
ful and unsuccessful actions. An action is deemed unsuccessful when the agent
tries to purchase energy with full storage or utilize electricity with an empty
battery. This unsuccessful action is comparable to waiting, as it doesn’t affect
the environment. For detailed statistics on the frequency of action selection in
the test dataset, please consult Table 7.

Table 7: Frequency of a given action occurrence for different agents in % in the
test dataset. An action is unsuccessful when the agent attempts to buy energy
with full storage or use electricity with an empty battery. Successful buy or use
actions are when energy is actually bought or used.

Agent
number Wait action Successful

buy action
Successful use

action
Unsucc. buy

action
Unsucc. use

action
0 46.16 0.09 0.13 53.63 0
1 41.05 3.57 5.44 39.91 10
2 16.35 2.12 2.89 78.65 0

A detailed examination of agents’ behaviour reveals no clear signs of cooper-
ation or competition. Agents seem to recognize the influence of others on prices,
with instances of more than one agent successfully purchasing or using energy
being infrequent, constituting only 1.21% and 1.77% of the total amount of ac-
tions, respectively. These cases, where significant differences between initial and
final prices occur, could be interpreted as competitive behaviours. Conversely,
scenarios where one agent successfully buys, another successfully uses, and a
third waits result in minimal price changes, suggesting potential cooperative be-
haviour. However, such cases are rare, amounting to only 0.05% of total episodes.
These findings indicate that selfish agents do not establish implicit relationships
with each other.

The difference between the best strategies for generated energy utilization in
single-agent and MAS simulations can be attributed to the price-demand rela-
tionship in MAS. Storing generated energy and using it only during favourable
moments, as observed in the MAS agents’ approach, proves more effective in
maximizing savings. In MAS, optimal savings are achieved when electricity gen-
eration moderately exceeds individual agent demand, highlighting the impor-
tance of maintaining export price viability without driving it down. This assumes
other agents don’t adopt the same strategy, which could impact profitability.
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